Remote Sensing (Jun 2018)

Inland Water Atmospheric Correction Based on Turbidity Classification Using OLCI and SLSTR Synergistic Observations

  • Shun Bi,
  • Yunmei Li,
  • Qiao Wang,
  • Heng Lyu,
  • Ge Liu,
  • Zhubin Zheng,
  • Chenggong Du,
  • Meng Mu,
  • Jie Xu,
  • Shaohua Lei,
  • Song Miao

DOI
https://doi.org/10.3390/rs10071002
Journal volume & issue
Vol. 10, no. 7
p. 1002

Abstract

Read online

Atmospheric correction is an essential prerequisite for obtaining accurate inland water color information. An inland water atmospheric correction algorithm, ACbTC (Atmospheric Correction based on Turbidity Classification), was proposed in this study by using OLCI (Ocean and Land Color Instrument) and SLSTR (Sea and Land Surface Temperature Radiometer) synergistic observations for the first time. This method includes two main steps: (1) water turbidity classification by the GRA index (GRAdient of the spectrum index); and (2) atmospheric correction by synergistic use of OLCI and SLSTR images. The algorithm was validated with 72 in situ sampling sites in Lake Erhai, Lake Hongze, and Lake Taihu, and compared with other atmospheric correction methods, i.e., C2RCC (Case 2 Regional Coast Colour processor), MUMM (Management Unit of the North Seas Mathematical Models), FLAASH (Fast Line-of-sight Atmospheric Analysis of Hypercubes), POLYMER (POLYnomial based algorithm applied to MERIS), and BPAC (Bright Pixel Atmospheric Correction). The results show that (1) the GRA index performed better than the proposed turbidity classification indices, i.e., the Diff (spectral difference index) and the Tind (turbid index), in inland lakes by using the reflectance peak at 1020 nm in clean water; (2) the synergistic use of OLCI and SLSTR performed feasibly for atmospheric correction, and the ACbTC algorithm achieved full-band average values of the mean absolute percentage error (MAPE) = 29.55%, mean relative percentage error (MRPE) = 13.98%, and the root mean square of error (RMSE) = 0.0039 sr−1, which were more reliable than C2RCC, MUMM, FLAASH, POLYMER, and BPAC; and (3) the synergistic use of the 17th band (865 nm) on OLCI and the 5th band (1613 nm) on SLSTR are suitable for clean inland lakes, while both the 5th band (1613 nm) and 6th band (2250 nm) on SLSTR are advisable for the turbidity.

Keywords