Universe (Sep 2022)

Probing Our Universe’s Past Using Earth’s Geological and Climatological History and Shadows of Galactic Black Holes

  • V. K. Oikonomou,
  • Pyotr Tsyba,
  • Olga Razina

DOI
https://doi.org/10.3390/universe8090484
Journal volume & issue
Vol. 8, no. 9
p. 484

Abstract

Read online

In this short review, we discuss how Earth’s climatological and geological history and also how the shadows of galactic black holes might reveal our Universe’s past evolution. Specifically we point out that a pressure singularity that occurred in our Universe’s past might have left its imprint on Earth’s geological and climatological history and on the shadows of cosmological black holes. Our approach is based on the fact that the H0 tension problem may be resolved if some sort of abrupt physics change occurred in our Universe 70–150 Myrs ago, an abrupt change that deeply affected the Cepheid parameters. We review how such an abrupt physics change might have been caused in our Universe by a smooth passage of it through a pressure finite-time singularity. Such finite-time singularities might occur in modified gravity and specifically in F(R) gravity, so we show how modified gravity might drive this type of evolution, without resorting to peculiar cosmic fluids or scalar fields. The presence of such a pressure singularity can distort the elliptic trajectories of bound objects in the Universe, causing possible geological and climatological changes on Earth, if its elliptic trajectory around the Sun might have changed. Also, such a pressure singularity affects directly the circular photon orbits around supermassive galactic black holes existing at cosmological redshift distances, thus the shadows of some cosmological black holes at redshifts z≤0.01, might look different in shape, compared with the SgrA* and M87* supermassive black holes. This feature however can be checked experimentally in the very far future.

Keywords