PLoS ONE (Jun 2009)

Systemic disease-induced salivary biomarker profiles in mouse models of melanoma and non-small cell lung cancer.

  • Kai Gao,
  • Hui Zhou,
  • Lei Zhang,
  • Jin Wook Lee,
  • Qing Zhou,
  • Shen Hu,
  • Lawrence E Wolinsky,
  • James Farrell,
  • Guido Eibl,
  • David T Wong

DOI
https://doi.org/10.1371/journal.pone.0005875
Journal volume & issue
Vol. 4, no. 6
p. e5875

Abstract

Read online

Saliva (oral fluids) is an emerging biofluid poised for detection of clinical diseases. Although the rationale for oral diseases applications (e.g. oral cancer) is intuitive, the rationale and relationship between systemic diseases and saliva biomarkers are unclear.In this study, we used mouse models of melanoma and non-small cell lung cancer and compared the transcriptome biomarker profiles of tumor-bearing mice to those of control mice. Microarray analysis showed that salivary transcriptomes were significantly altered in tumor-bearing mice vs. controls. Significant overlapping among transcriptomes of mouse tumors, serum, salivary glands and saliva suggests that salivary biomarkers have multiple origins. Furthermore, we identified that the expression of two groups of significantly altered transcription factors (TFs) Runx1, Mlxipl, Trim30 and Egr1, Tbx1, Nr1d1 in salivary gland tissue of melanoma-bearing mice can potentially be responsible for 82.6% of the up-regulated gene expression and 62.5% of the down-regulated gene expression, respectively, in the saliva of melanoma-bearing mice. We also showed that the ectopic production of nerve growth factor (NGF) in the melanoma tumor tissue as a tumor-released mediator can induce expression of the TF Egr-1 in the salivary gland.Taken together, our data support the conclusion that upon systemic disease development, significant changes can occur in the salivary biomarker profile. Although the origins of the disease-induced salivary biomarkers may be both systemic and local, stimulation of salivary gland by mediators released from remote tumors plays an important role in regulating the salivary surrogate biomarker profiles.