International Journal of Molecular Sciences (Apr 2020)

Chemerin Treatment Inhibits the Growth and Bone Invasion of Breast Cancer Cells

  • Hyungkeun Kim,
  • Joo-Hee Lee,
  • Sun Kyoung Lee,
  • Na-Young Song,
  • Seung Hwa Son,
  • Ki Rim Kim,
  • Won-Yoon Chung

DOI
https://doi.org/10.3390/ijms21082871
Journal volume & issue
Vol. 21, no. 8
p. 2871

Abstract

Read online

Chemerin is secreted as prochemerin from various cell types and then cleaved into the bioactive isoform by specific proteases. In various cancer types, chemerin exhibits pro- or antitumor effects. In the present study, chemerin treatment significantly inhibited the viability and invasion of breast cancer cells in the absence or presence of transforming growth factor (TGF)-β and insulin-like growth factor (IGF)-1. The expression levels of E-cadherin and vimentin were reduced in chemerin-treated breast cancer cells. However, chemerin treatment recovered the reduced E-cadherin expression level in breast cancer cells treated with TGF-β or IGF-1. Chemerin treatment inhibited nuclear β-catenin levels in breast cancer cells stimulated with or without TGF-β or IGF-1. In addition, chemerin treatment blocked the increase in the receptor activator of nuclear factor kappa-Β ligand (RANKL)/osteoprotegerin (OPG) ratio in osteoblastic cells exposed to metastatic breast cancer cell-derived conditioned medium. Chemerin treatment inhibited RANKL-induced osteoclast formation and bone resorption by reducing the secretion of matrix metalloproteinase (MMP)-2, MMP-9, and cathepsin K. Intraperitoneal administration of chemerin inhibited tumor growth in MCF-7 breast cancer cell-injected mice and reduced the development of osteolytic lesions resulting from intratibial inoculation of MDA-MB-231 cells. Taken together, chemerin inhibits the growth and invasion of breast cancer cells and prevents bone loss resulting from breast cancer cells by inhibiting finally osteoclast formation and activity.

Keywords