Nuclear Fusion (Jan 2024)
Quantification of locked mode instability triggered by a change in confinement
- M. Peterka,
- J. Seidl,
- T. Markovic,
- A. Loarte,
- N.C. Logan,
- J.-K. Park,
- P. Cahyna,
- J. Havlicek,
- M. Imrisek,
- L. Kripner,
- R. Panek,
- M. Sos,
- P. Bilkova,
- K. Bogar,
- P. Bohm,
- A. Casolari,
- Y. Gribov,
- O. Grover,
- P. Hacek,
- M. Hron,
- K. Kovarik,
- M. Tomes,
- D. Tskhakaya,
- J. Varju,
- P. Vondracek,
- V. Weinzettl,
- the COMPASS Team
Affiliations
- M. Peterka
- ORCiD
- Institute of Plasma Physics of the Czech Academy of Sciences , Prague, Czech Republic; Faculty of Mathematics and Physics, Charles University , Prague, Czech Republic
- J. Seidl
- ORCiD
- Institute of Plasma Physics of the Czech Academy of Sciences , Prague, Czech Republic
- T. Markovic
- ORCiD
- Institute of Plasma Physics of the Czech Academy of Sciences , Prague, Czech Republic
- A. Loarte
- ORCiD
- ITER Organization , St Paul-lez-Durance, France
- N.C. Logan
- ORCiD
- Columbia University , New York, NY, United States of America
- J.-K. Park
- ORCiD
- Princeton Plasma Physics Laboratory , Princeton, NJ, United States of America
- P. Cahyna
- ORCiD
- Institute of Plasma Physics of the Czech Academy of Sciences , Prague, Czech Republic
- J. Havlicek
- ORCiD
- Institute of Plasma Physics of the Czech Academy of Sciences , Prague, Czech Republic
- M. Imrisek
- ORCiD
- Institute of Plasma Physics of the Czech Academy of Sciences , Prague, Czech Republic
- L. Kripner
- ORCiD
- Institute of Plasma Physics of the Czech Academy of Sciences , Prague, Czech Republic
- R. Panek
- ORCiD
- Institute of Plasma Physics of the Czech Academy of Sciences , Prague, Czech Republic
- M. Sos
- ORCiD
- Institute of Plasma Physics of the Czech Academy of Sciences , Prague, Czech Republic
- P. Bilkova
- ORCiD
- Institute of Plasma Physics of the Czech Academy of Sciences , Prague, Czech Republic
- K. Bogar
- ORCiD
- Institute of Plasma Physics of the Czech Academy of Sciences , Prague, Czech Republic
- P. Bohm
- ORCiD
- Institute of Plasma Physics of the Czech Academy of Sciences , Prague, Czech Republic
- A. Casolari
- ORCiD
- Institute of Plasma Physics of the Czech Academy of Sciences , Prague, Czech Republic
- Y. Gribov
- ITER Organization , St Paul-lez-Durance, France
- O. Grover
- ORCiD
- Institute of Plasma Physics of the Czech Academy of Sciences , Prague, Czech Republic
- P. Hacek
- ORCiD
- Institute of Plasma Physics of the Czech Academy of Sciences , Prague, Czech Republic
- M. Hron
- ORCiD
- Institute of Plasma Physics of the Czech Academy of Sciences , Prague, Czech Republic
- K. Kovarik
- ORCiD
- Institute of Plasma Physics of the Czech Academy of Sciences , Prague, Czech Republic
- M. Tomes
- ORCiD
- Institute of Plasma Physics of the Czech Academy of Sciences , Prague, Czech Republic
- D. Tskhakaya
- ORCiD
- Institute of Plasma Physics of the Czech Academy of Sciences , Prague, Czech Republic
- J. Varju
- ORCiD
- Institute of Plasma Physics of the Czech Academy of Sciences , Prague, Czech Republic
- P. Vondracek
- ORCiD
- Institute of Plasma Physics of the Czech Academy of Sciences , Prague, Czech Republic
- V. Weinzettl
- ORCiD
- Institute of Plasma Physics of the Czech Academy of Sciences , Prague, Czech Republic
- the COMPASS Team
- DOI
- https://doi.org/10.1088/1741-4326/ad6ce7
- Journal volume & issue
-
Vol. 64,
no. 10
p. 106029
Abstract
This work presents the first analysis of the disruptive locked mode (LM) triggered by the dynamics of a confinement change. It shows that, under certain conditions, the LM threshold during the transient is significantly lower than expected from steady states. We investigate the sensitivity to a controlled n = 1 error field (EF) activated prior to the L-H transition in the COMPASS tokamak, at q _95 ∼ 3, β _N ∼ 1, and using EF coils on the high-field side of the vessel. A threshold for EF penetration subsequent to the L-H transition is identified, which shows no significant trend with density or applied torque, and is an apparent consequence of the reduced intrinsic rotation of the 2/1 mode during this transient phase. This finding challenges the assumption made in theoretical and empirical works that natural mode rotation can be predicted by global plasma parameters and urges against using any parametric EF penetration scaling derived from steady-state experiments to define the EF correction strategy in the entire discharge. Furthermore, even at EFs below the identified penetration threshold, disruptive locking of sawtooth-seeded 2/1 tearing modes is observed after about 30% of L-H transitions without external torque.
Keywords