Viruses (Apr 2022)

Fungal Secondary Metabolite Exophillic Acid Selectively Inhibits the Entry of Hepatitis B and D Viruses

  • Chisa Kobayashi,
  • Yoshihiro Watanabe,
  • Mizuki Oshima,
  • Tomoyasu Hirose,
  • Masako Yamasaki,
  • Masashi Iwamoto,
  • Masato Iwatsuki,
  • Yukihiro Asami,
  • Kouji Kuramochi,
  • Kousho Wakae,
  • Hideki Aizaki,
  • Masamichi Muramatsu,
  • Camille Sureau,
  • Toshiaki Sunazuka,
  • Koichi Watashi

DOI
https://doi.org/10.3390/v14040764
Journal volume & issue
Vol. 14, no. 4
p. 764

Abstract

Read online

Current anti-hepatitis B virus (HBV) drugs are suppressive but not curative for HBV infection, so there is considerable demand for the development of new anti-HBV agents. In this study, we found that fungus-derived exophillic acid inhibits HBV infection with a 50% maximal inhibitory concentration (IC50) of 1.1 µM and a 50% cytotoxic concentration (CC50) of >30 µM in primary human hepatocytes. Exophillic acid inhibited preS1-mediated viral attachment to cells but did not affect intracellular HBV replication. Exophillic acid appears to target the host cells to reduce their susceptibility to viral attachment rather than acting on the viral particles. We found that exophillic acid interacted with the HBV receptor, sodium taurocholate cotransporting polypeptide (NTCP). Exophillic acid impaired the uptake of bile acid, the original function of NTCP. Consistent with our hypothesis that it affects NTCP, exophillic acid inhibited infection with HBV and hepatitis D virus (HDV), but not that of hepatitis C virus. Moreover, exophillic acid showed a pan-genotypic anti-HBV effect. We thus identified the anti-HBV/HDV activity of exophillic acid and revealed its mode of action. Exophillic acid is expected to be a potential new lead compound for the development of antiviral agents.

Keywords