Acta Veterinaria Scandinavica (May 2012)
Alternative classification and screening protocol for transitional lumbosacral vertebra in German shepherd dogs
Abstract
Abstract Background Lumbosacral transitional vertebra (LTV) is a common congenital and hereditary anomaly in many dog breeds. It predisposes to premature degeneration of the lumbosacral junction, and is a frequent cause of cauda equina syndrome, especially in German shepherd dogs. Ventrodorsal hip radiographs are most often used in diagnosis of LTV in screening programs. In this study, value of laterolateral lumbar spine radiographs as additions to ventrodorsal radiographs in diagnosis of LTV, and characteristics of LTV and the eighth lumbar vertebra (L8) in laterolateral radiographs were studied. Additionally, computed tomography (CT) features of different types of LTV were elucidated. Methods The ventrodorsal pelvic and laterolateral lumbar spine radiographs of 228 German shepherd dogs were evaluated for existence and type of LTV. Morphology of transverse processes was used in classification of LTV in ventrodorsal radiographs. The relative length of sixth (L6) and seventh (L7) vertebrae (L6/L7) was used in characterization of these vertebrae in laterolateral radiographs. CT studies were available for 16 dogs, and they were used for more detailed characterization of different types of LTV. Non-parametric χ2 statistics, generalized logit model for multinomial data, and one-way analysis of variance was used for statistical analyses. Results In all, 92 (40%) dogs had a LTV, the most common type being separation of first spinous process from the median crest of the sacrum in 62 dogs (67% of LTV). Eight dogs had eight lumbar vertebrae. Those dogs with LTV had longer L7 in relation to L6 than dogs with normal lumbosacral junctions. When L6/L7 decreased by 0.1 units, the proportion of dogs belonging to the group with L8 was 14-fold higher than in the group with normal lumbosacral junctions. L8 resembled first sacral vertebra (S1) in length and position and was therefore classified as one type of LTV. With CT it was shown that categorizing LTV, based on shape and visibility of transverse processes seen in ventrodorsal radiographs, could be misleading. Conclusions We suggest that L8 be included as a part of the LTV complex, and the laterolateral radiographs of the lumbar spine be considered as an addition to ventrodorsal projections in the screening protocols for LTV.
Keywords