Ecotoxicology and Environmental Safety (Jul 2021)
A deep insight into the suppression mechanism of Sedum alfredii root exudates on Pseudomonas aeruginosa based on quorum sensing
Abstract
Quorum sensing (QS) plays an important role in the intensive communication between plants and microbes in the rhizosphere during the phytoremediation. This study explored the influence of the root exudates of hyperaccumulator Sedum alfredii on Pseudomonas aeruginosa based on QS. The effects of the components of root exudates, genes expression and transcription regulation of QS system (especially the las system) in Pseudomonas aeruginosa wild-type strain (WT) and rhl system mutant strain (ΔrhlI) were systematically analyzed and discussed. The WT and ΔrhlI exposed to gradient root exudates (0×, 1×, 2×, 5× and 10×) showed a concentration-corrective inhibition on protease production, with the inhibition rates of 51.4–74.5% and 31.2–50.0%, respectively. Among the components of the root exudates of Sedum alfredii, only thymol had an inhibition effects to the root exudates on the activity of protease and elastase. The inhibition rates of 50 μmol/L thymol on protease and elastase in WT were 44.7% and 24.3%, respectively, which was consistent with the variation in ΔrhlI. The gene expression of lasB declined 36.0% under the 1× root exudate treatment and 73.0% under the 50 μmol/L thymol treatment. Meanwhile, there was no significant impact on N-3-oxo-dodecanoyl-L-homoserine lactone signal production and the gene expression of lasI and lasR. Therefore, thymol from Sedum alfredii root exudates could inhibit the formation of protease and elastase in Pseudomonas aeruginosa by suppressing the expression of lasB, without any significant influence on the main las system as a potential natural QS inhibitor.