Environmental Sciences Proceedings (Nov 2023)

Quantification of Coastal Erosion Rates Using Landsat 5, 7, and 8 and Sentinel-2 Satellite Images from 1986–2022—Case Study: Cartagena Bay, Valparaíso, Chile

  • Idania Briceño de Urbaneja,
  • Waldo Pérez-Martínez,
  • Carolina Martínez,
  • Josep Pardo-Pascual,
  • Jesús Palomar-Vázquez,
  • Catalina Aguirre,
  • Raimundo Donoso-Garcés

DOI
https://doi.org/10.3390/ECRS2023-16300
Journal volume & issue
Vol. 29, no. 1
p. 56

Abstract

Read online

Coastal erosion has become one of the many natural hazards affecting Chile’s sandy coastlines. Currently, more than 90% of the sandy coasts of Valparaíso show high erosion rates. Cartagena Bay is one of the coastal areas with the greatest transformations caused by extreme events and anthropogenic activities. Satellite imagery is seen as an invaluable resource for following these coastal changes. This study combines optical satellite imagery, a simulation-derived wave climate, in situ data, the SHOREX system developed in Python, and GIS-based tools such as DSAS to quantify rates of change in the Bay from 1986 to 2022. Satellite-derived shorelines were used to identify erosion hotspot areas in the Bay, differentiating the impact of erosive processes associated with ENSO hydrometeorological phenomena, the 27-F 2010 earthquake, and tidal waves from 2015–2022, which led to major transformations in the morphodynamics of the beach. The results show that the Bay is currently undergoing high erosional processes in 20% of the coastline with values <− 1.5 m/year and 60% with erosion rates ranging from [−0.2 to −1.5 m/year]. Since 2015, these processes have been accentuated, due to increased swells throughout the year.

Keywords