Applied Sciences (Jun 2021)

Detection of Unknown DDoS Attacks with Deep Learning and Gaussian Mixture Model

  • Chin-Shiuh Shieh,
  • Wan-Wei Lin,
  • Thanh-Tuan Nguyen,
  • Chi-Hong Chen,
  • Mong-Fong Horng,
  • Denis Miu

DOI
https://doi.org/10.3390/app11115213
Journal volume & issue
Vol. 11, no. 11
p. 5213

Abstract

Read online

DDoS (Distributed Denial of Service) attacks have become a pressing threat to the security and integrity of computer networks and information systems, which are indispensable infrastructures of modern times. The detection of DDoS attacks is a challenging issue before any mitigation measures can be taken. ML/DL (Machine Learning/Deep Learning) has been applied to the detection of DDoS attacks with satisfactory achievement. However, full-scale success is still beyond reach due to an inherent problem with ML/DL-based systems—the so-called Open Set Recognition (OSR) problem. This is a problem where an ML/DL-based system fails to deal with new instances not drawn from the distribution model of the training data. This problem is particularly profound in detecting DDoS attacks since DDoS attacks’ technology keeps evolving and has changing traffic characteristics. This study investigates the impact of the OSR problem on the detection of DDoS attacks. In response to this problem, we propose a new DDoS detection framework featuring Bi-Directional Long Short-Term Memory (BI-LSTM), a Gaussian Mixture Model (GMM), and incremental learning. Unknown traffic captured by the GMM are subject to discrimination and labeling by traffic engineers, and then fed back to the framework as additional training samples. Using the data sets CIC-IDS2017 and CIC-DDoS2019 for training, testing, and evaluation, experiment results show that the proposed BI-LSTM-GMM can achieve recall, precision, and accuracy up to 94%. Experiments reveal that the proposed framework can be a promising solution to the detection of unknown DDoS attacks.

Keywords