Biosensors (Apr 2024)

Weak Value Amplification-Based Biochip for Highly Sensitive Detection and Identification of Breast Cancer Exosomes

  • Jingru Zhao,
  • Xiaotian Guan,
  • Sihao Zhang,
  • Zhou Sha,
  • Shuqing Sun

DOI
https://doi.org/10.3390/bios14040198
Journal volume & issue
Vol. 14, no. 4
p. 198

Abstract

Read online

Exosomes constitute an emerging biomarker for cancer diagnosis because they carry multiple proteins that reflect the origins of the parent cell. The highly sensitive detection of exosomes is a crucial prerequisite for the diagnosis of cancer. In this study, we report an exosome detection system based on quantum weak value amplification (WVA). The WVA detection system consists of a reflection detection light path and a Zr-ionized biochip. Zr-ionized biochips effectively capture exosomes through the specific interaction between zirconium dioxide and the phosphate groups on the lipid bilayer of exosomes. Aptamer-modified gold nanoparticles (Au NPs) are then used to specifically recognize proteins on exosomes to enhance the detection signal. The sensitivity and resolution of the detection system are 2944.07 nm/RIU and 1.22 × 10−5 RIU, respectively. The concentration of exosomes can be directly quantified by the WVA system, ranging from 105–107 particles/mL with the detection limit of 3 × 104 particles/mL. The use of Au NPs-EpCAM for the specific enhancement of breast cancer MDA-MB-231 exosomes is demonstrated. The results indicate that the WVA detection system can be a promising candidate for the detection of exosomes as tumor markers.

Keywords