Neoplasia: An International Journal for Oncology Research (Feb 2017)

Matrix Metalloproteinase 14 promotes lung cancer by cleavage of Heparin-Binding EGF-like Growth Factor

  • Marcin Stawowczyk,
  • Max D. Wellenstein,
  • Sharrell B. Lee,
  • Shira Yomtoubian,
  • Anna Durrans,
  • Hyejin Choi,
  • Navneet Narula,
  • Nasser K. Altorki,
  • Dingcheng Gao,
  • Vivek Mittal

DOI
https://doi.org/10.1016/j.neo.2016.11.005
Journal volume & issue
Vol. 19, no. 2
pp. 55 – 64

Abstract

Read online

Molecularly targeted therapies benefit approximately 15–20% of non-small cell lung cancer (NSCLC) patients carrying specific drug-sensitive mutations. Thus, there is a clinically unmet need for the identification of novel targets for drug development. Here, we performed RNA-deep sequencing to identify altered gene expression between malignant and non-malignant lung tissue. Matrix Metalloproteinase 14 (MMP14), a membrane-bound proteinase, was significantly up-regulated in the tumor epithelial cells and intratumoral myeloid compartments in both mouse and human NSCLC. Overexpression of a soluble dominant negative MMP14 (DN-MMP14) or pharmacological inhibition of MMP14 blocked invasion of lung cancer cells through a collagen I matrix in vitro and reduced tumor incidence in an orthotopic K-RasG12D/+p53−/− mouse model of lung cancer. Additionally, MMP14 activity mediated proteolytic processing and activation of Heparin-Binding EGF-like Growth Factor (HB-EGF), stimulating the EGFR signaling pathway to increase proliferation and tumor growth. This study highlights the potential for development of therapeutic strategies that target MMP14 in NSCLC with particular focus on MMP14-HB-EGF axis.