Gels (Aug 2024)

Acid Hydrolysis of Quinoa Starch to Stabilize High Internal Phase Emulsion Gels

  • Songnan Li,
  • Chaohui Sun,
  • Ye Sun,
  • Enpeng Li,
  • Ping Li,
  • Jun Wang

DOI
https://doi.org/10.3390/gels10090559
Journal volume & issue
Vol. 10, no. 9
p. 559

Abstract

Read online

Starch nanocrystals (SNCs) to stabilize high internal phase emulsions (HIPEs) always suffer low production efficiency from acid hydrolysis. Due to its small granule size, Quinoa starch (QS) was selected to produce SNCs as a function of acid hydrolysis time (0–4 days), and their structural changes and potential application as HIPEs’ stabilizers were further explored. With increasing the acid hydrolysis time from 1 day to 4 days, the yield of QS nanocrystals decreased from 30.4% to 10.8%, with the corresponding degree of hydrolysis increasing from 51.2% to 87.8%. The occurrence of QS nanocrystals was evidenced from the Tyndall effect and scanning electron microscopy with particle size distribution. The relative crystallinity of QS subjected to different hydrolysis times (0–4 days) increased from 22.27% to 26.18%. When the acid hydrolysis time of QS was 3 and 4 days, their HIPEs showed self-standing after inversion, known as high internal phase emulsion gels (HIPE gels), closely related to their densely packed interfacial architecture around oil droplets, seen on an optical microscope, and relatively high apparent viscosity. This study could provide a theoretical guidance for the efficient production and novel emulsification of SNCs from QS to HIPE gels.

Keywords