Materials (Sep 2018)

Three-Dimensional Bioprinting of Cartilage by the Use of Stem Cells: A Strategy to Improve Regeneration

  • Livia Roseti,
  • Carola Cavallo,
  • Giovanna Desando,
  • Valentina Parisi,
  • Mauro Petretta,
  • Isabella Bartolotti,
  • Brunella Grigolo

DOI
https://doi.org/10.3390/ma11091749
Journal volume & issue
Vol. 11, no. 9
p. 1749

Abstract

Read online

Cartilage lesions fail to heal spontaneously, leading to the development of chronic conditions which worsen the life quality of patients. Three-dimensional scaffold-based bioprinting holds the potential of tissue regeneration through the creation of organized, living constructs via a “layer-by-layer” deposition of small units of biomaterials and cells. This technique displays important advantages to mimic natural cartilage over traditional methods by allowing a fine control of cell distribution, and the modulation of mechanical and chemical properties. This opens up a number of new perspectives including personalized medicine through the development of complex structures (the osteochondral compartment), different types of cartilage (hyaline, fibrous), and constructs according to a specific patient’s needs. However, the choice of the ideal combination of biomaterials and cells for cartilage bioprinting is still a challenge. Stem cells may improve material mimicry ability thanks to their unique properties: the immune-privileged status and the paracrine activity. Here, we review the recent advances in cartilage three-dimensional, scaffold-based bioprinting using stem cells and identify future developments for clinical translation. Database search terms used to write this review were: “articular cartilage”, “menisci”, “3D bioprinting”, “bioinks”, “stem cells”, and “cartilage tissue engineering”.

Keywords