Nature Communications (Dec 2023)
Designing Cu0−Cu+ dual sites for improved C−H bond fracture towards methanol steam reforming
Abstract
Abstract Copper-based catalysts serve as the predominant methanol steam reforming material although several fundamental issues remain ambiguous such as the identity of active center and the aspects of reaction mechanism. Herein, we prepare Cu/Cu(Al)O x catalysts with amorphous alumina-stabilized Cu2O adjoining Cu nanoparticle to provide Cu0−Cu+ sites. The optimized catalyst exhibits 99.5% CH3OH conversion with a corresponding H2 production rate of 110.8 μmol s−1 gcat −1 with stability over 300 h at 240 °C. A binary function correlation between the CH3OH reaction rate and surface concentrations of Cu0 and Cu+ is established based on kinetic studies. Intrinsic active sites in the catalyst are investigated with in situ spectroscopy characterization and theoretical calculations. Namely, we find that important oxygen-containing intermediates (CH3O* and HCOO*) adsorb at Cu0−Cu+ sites with a moderate adsorption strength, which promotes electron transfer from the catalyst to surface species and significantly reduces the reaction barrier of the C−H bond cleavage in CH3O* and HCOO* intermediates.