HortTechnology (Oct 2022)

Effect of Substrate Stratification Without Fine Pine Bark Particles on Growth of Common Nursery Weed Species and Container-grown Ornamental Species

  • Yuvraj Khamare,
  • S. Christopher Marble ,
  • James E. Altland ,
  • Brian J. Pearson ,
  • Jianjun Chen ,
  • Pratap Devkota

DOI
https://doi.org/10.21273/HORTTECH05113-22
Journal volume & issue
Vol. 32, no. 6

Abstract

Read online

Substrate stratification is a new research area in which multiple substrates, or the same substrate with differing physical properties, are layered within a container to accomplish a production goal, such as decreasing water use, nutrient leaching, or potentially reducing weed growth. Previous research using stratification with pine (Pinus sp.) bark screened to ≤1/2 or 3/4 inch reduced the growth of bittercress (Cardamine flexuosa) by 80% to 97%, whereas liverwort (Marchantia polymorpha) coverage was reduced by 95% to 99%. The objective of this study was to evaluate substrate stratification with pine bark screened to remove all fine particles as the top strata of the substrate and determine its effect on common nursery weeds and ornamental plants. Stratified treatments consisted of pine bark screened to either 1/8 to 1/4 inch, 1/4 to 1/2 inch, or 3/8 to 3/4 inch, applied at depths of either 1 or 2 inches on top of a standard ≤1/2-inch pine bark substrate. An industry-standard treatment was also included in which the substrate was not stratified but consisted of only ≤1/2-inch pine bark throughout the container. A controlled-release fertilizer was incorporated at the bottom strata in all stratified treatments (no fertilizer in the top 1 or 2 inches of the container media), whereas the industry standard treatment had fertilizer incorporated throughout. Compared with the nonstratified industry standard, substrate stratification decreased spotted spurge (Euphorbia maculata) counts by 30% to 84% and bittercress counts by 57% to 94% after seeding containers. The shoot dry weight of spotted spurge was reduced by 14% to 55%, and bittercress shoot dry weight was reduced by 71% to 93% in stratified treatments. Liverwort coverage was reduced by nearly 100% in all the stratified substrate treatments. Compared with the industry standard substrate, stratified treatments reduced shoot dry weight of ligustrum (Ligustrum japonicum) by up to 20%, but no differences were observed in growth index, nor were any growth differences observed in blue plumbago (Plumbago auriculata).

Keywords