PLoS ONE (Jan 2016)

EPA Prevents the Development of Abdominal Aortic Aneurysms through Gpr-120/Ffar-4.

  • Ryo Kamata,
  • Batmunkh Bumdelger,
  • Hiroki Kokubo,
  • Masayuki Fujii,
  • Koichi Yoshimura,
  • Takafumi Ishida,
  • Mari Ishida,
  • Masao Yoshizumi

DOI
https://doi.org/10.1371/journal.pone.0165132
Journal volume & issue
Vol. 11, no. 10
p. e0165132

Abstract

Read online

Abdominal aortic aneurysms (AAAs), which commonly occur among elderly individuals, are accompanied by a risk of rupture with a high mortality rate. Although eicosapentaenoic acid (EPA) has been reported to prevent AAA formation, the mechanism by which EPA works on vascular smooth muscle cells is unknown. This study aimed to investigate the mechanism by which orally-administered EPA prevents the formation of severe AAAs that develop in Osteoprotegerin (Opg) knockout (KO) mice. In the CaCl2-induced AAA model, EPA attenuated the enhanced progression of AAAs in Opg-KO mice, including the increase in aortic diameter with destruction of elastic fibers in the media. Immunohistochemical analyses showed that EPA reduced the phosphorylation of transforming growth factor beta-activated kinase-1/Map3k7 (Tak-1) and c-Jun NH2-terminal kinase (JNK), as well as the expression of Matrix metalloproteinase-9 (Mmp-9) in the media of the aorta. In smooth muscle cell cultures, rh-TRAIL-induced activation of the Tak-1-JNK pathway and increase in Mmp-9 expression were inhibited by EPA. Moreover, GW9508, a specific ligand for G-protein coupled receptor (Gpr)-120/Free fatty acid receptor (Ffar)-4, mimicked the effects of EPA. The effects of EPA were abrogated by knockdown of the Gpr-120/Ffar-4 receptor gene. Our data demonstrate that the Trail-Tak-1-JNK-Mmp-9 pathway is responsible for the enhancement of AAAs in Opg-KO mice, and that EPA inhibits the Tak-1-JNK pathway by activating Gpr-120/Ffar-4, which results in the attenuation of AAA development.