E3S Web of Conferences (Jan 2021)

Improving the functioning efficiency of 6-10 kV electrical networks with isolated neutral in conditions of single-phase ground faults

  • Kachanov Alexander Nikolaevich,
  • Chernyshov Vadim Alekseevich,
  • Meshkov Boris Nikolaevich,
  • Garifullin Marsel Sharifyanovich,
  • Pechagin Evgeny Alexandrovich

DOI
https://doi.org/10.1051/e3sconf/202128801010
Journal volume & issue
Vol. 288
p. 01010

Abstract

Read online

The main objectives of this publication are: 1) to attract the attention of energy specialists to the problems of reliability and electrical safety of 6-10 kV overhead electrical networks with isolated neutral, operating in conditions of single-phase insulation damage; 2) substantiation of the feasibility of introducing a fundamentally new way to improve the efficiency of 6-10 kV distribution networks, based on the resonanceless limitation of the single-phase ground fault current arising from the breakdown of the insulator and the use of its own infrastructure of the electrical network for remote identification of the place of its occurrence. The expediency of including a nonlinear surge suppressor between the traverse and the grounding outlet of the reinforced concrete support is confirmed by the positive results of experimental studies carried out on the basis of high-voltage testing laboratories of IDGC of Center PJSC - Orelenergo and EnerGarant LLC. The use of deductive analysis allowed the authors to select a reliable and affordable electrical insulating material installed between the support and the traverse, as well as to formulate the main requirements for it, including taking into account weather and climatic factors. The analysis of various methods of transmitting information about the place of occurrence of the insulator damage made it possible to establish the predominant advantage of a wired communication channel using its own 6-10 kV electric network infrastructure. The authors have developed an original circuitry solution that provides remote identification of the insulator damage location using a thyristor shunting the nonlinear surge suppressor, according to a given switching algorithm, and also provides local identification of the insulator breakdown by means of special signaling devices with volatile power supply. It is expected that the proposed method, with relatively low investment, will significantly reduce the level of accidents and electrical hazards in overhead distribution networks of 6-10 kV, as well as minimize the costs associated with their operation and undersupply of electrical energy.