Advances in Sample Preparation (Oct 2023)

Comparison of fragrance and flavor components in non-psilocybin and psilocybin mushrooms using vacuum-assisted headspace high-capacity solid-phase microextraction and gas chromatography–mass spectrometry

  • Shannon L. Thomas,
  • Colton Myers,
  • Kevin A. Schug

Journal volume & issue
Vol. 8
p. 100090

Abstract

Read online

Vacuum-assisted headspace high capacity solid-phase microextraction (Vac-HS-HC-SPME) coupled with gas chromatography–mass spectrometry (GC–MS) was used to compare the volatile compounds that make up the volatile and semi-volatile components of five psilocybin mushrooms (Psilocybe cubensis), as well as three non-psilocybin mushroom species. Using an untargeted analysis, common volatiles detected consisted of acids, alcohols, aldehydes, ketones, and hydrocarbons. The initial comparison of Vac-HS-HC-SPME and HS-HC-SPME conditions showed 2 times increase in compound response as well as the detection of 8 additional compounds undetected by HS-HC-SPME. Compounds unique to psilocybin mushrooms were 2-methylbutanal, valeraldehyde, benzaldehyde, 3-octen-2-one, 2-methyl-dodecane, and 2‑butyl‑2-octenal. Compounds unique to non-psilocybin mushrooms were 2-methyl-pyrazine, 2,3-butanediol, butyric acid, butyrolactone, benzyl alcohol, 2-pyrrolidinone, and estragole. The commonly shared compound, 1-octen-3-ol, was shown to have a higher compound response among the psilocybin mushroom species.

Keywords