Acta Veterinaria Scandinavica (May 2022)

Elimination of porcine reproductive and respiratory syndrome virus infection using an inactivated vaccine in combination with a roll-over method in a Hungarian large-scale pig herd

  • Attila Pertich,
  • Zoltán Barna,
  • Orsolya Makai,
  • János Farkas,
  • Tamás Molnár,
  • Ádám Bálint,
  • István Szabó,
  • Mihály Albert

DOI
https://doi.org/10.1186/s13028-022-00630-5
Journal volume & issue
Vol. 64, no. 1
pp. 1 – 6

Abstract

Read online

Abstract Background Porcine reproductive and respiratory syndrome virus (PRRSV) causes severe economic losses worldwide and only four countries in Europe are free from PRRSV. Complete depopulation–repopulation is the safest and fastest, but also the most expensive method for eradicating PRRSV from a population. Another possible way to eliminate an endemic PRRSV infection is to replace the infected breeding stock by gilts reared isolated and protected from PRRSV on an infected farm. With this method it is possible to maintain continuous production on the farm. The authors report the first successful elimination of PRRSV in a Hungarian large-scale pig farm by using an inactivated vaccine and performing segregated rearing of the offspring. Case presentation The study was performed on a PRRSV infected farm (Farm A) with 1475 sows. The clinical signs of reproductive failure had been eliminated previously by using an inactivated vaccine (Progressis®, Ceva). At the beginning of the elimination programme, gilts intended for breeding were vaccinated at 60 and 90–100 days of age. After that, gilts selected for breeding were vaccinated at 6 months of age, on the 60–70th day of pregnancy and at weaning. Approximately 1200 piglets from vaccinated sows were transported at 7 weeks of age to a closed, empty farm (Farm B) after being tested negative for PRRSV by a polymerase chain reaction (PCR) method, and then were reared here until 14 weeks of age. At this age, all pigs were tested by PRRS ELISA. Seronegative gilts (n = 901) were subsequently transported from Farm B to a third, closed and empty farm (Farm C), and (having reached the breeding age) they were inseminated here after a second negative serological test (ELISA). At the same time, Farm A was depopulated, cleaned and disinfected. All pregnant gilts were transported from Farm C to Farm A after being re-tested negative for antibodies against PRRSV. Follow-up serology tests were performed after farrowing and results yielded only seronegative animals. Based on the subsequent negative test results, the herd was declared PRRSV free by the competent authority. Conclusions The presented farm was the first during the National PRRS Eradication Programme of Hungary to eradicate PRRSV successfully by vaccinating the sows with an inactivated vaccine and performing segregated rearing of the offspring. Production was almost continuous during the whole process of population replacement.

Keywords