IEEE Transactions on Neural Systems and Rehabilitation Engineering (Jan 2022)

Characterization of Bimanual Cyclical Tasks From Single-Trial EEG-fNIRS Measurements

  • Yi-Chuan Jiang,
  • Rui Ma,
  • Shichen Qi,
  • Sheng Ge,
  • Ziqi Sun,
  • Yishu Li,
  • Jongbin Song,
  • Mingming Zhang

DOI
https://doi.org/10.1109/TNSRE.2022.3144216
Journal volume & issue
Vol. 30
pp. 146 – 156

Abstract

Read online

Robot-assisted bimanual training is promising to improve motor function and cortical reorganization for hemiparetic stroke patients. Closing the rehabilitation training loop with neurofeedback can help refine training protocols in time for better engagements and outcomes. However, due to the low signal-to-noise ratio (SNR) and non-stationary properties of neural signals, reliable characterization of bimanual training-induced neural activities from single-trial measurement is challenging. In this study, ten human participants were recruited conducting robot-assisted bimanual cyclical tasks (in-phase, 90° out-of-phase, and anti-phase) when concurrent electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) were recorded. A unified EEG-fNIRS bimodal signal processing framework was proposed to characterize neural activities induced by three types of bimanual cyclical tasks. In this framework, novel artifact removal methods were used to improve the SNR and the task-related component analysis (TRCA) was introduced to increase the reproducibility of EEG-fNIRS bimodal features. The optimized features were transformed into low-dimensional indicators to reliably characterize bimanual training-induced neural activation. The SVM classification results of three bimanual cyclical tasks revealed a good discrimination ability of EEG-fNIRS bimodal indicators (90.1%), which was higher than that using EEG (74.8%) or fNIRS (82.2%) alone, supporting the proposed method as a feasible technique to characterize neural activities during robot-assisted bimanual training.

Keywords