Tulīd va Farāvarī-i Maḥṣūlāt-i Zirā̒ī va Bāghī (Apr 2024)
Evaluation of the Effect of Salicylic Acid and Brassinosteroid on Some Physiological Traits and Arsenic Accumulation in Spinach under Arsenic Stress Conditions
Abstract
With the aim of evaluating the effects of salicylic acid and brassinosteroid application on some physiological traits and arsenic accumulation in spinach under arsenic stress conditions, an experiment was conducted in a factorial experiment in the form of a randomized complete block design with four replications in the year 2022 in the Nutrition Research Center, Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Iran. The experimental factors included salicylic acid (0, 0.5, and 0.75 mM), brassinosteroid (0, 0.5, and 0.75 µM), and arsenic stress (0, 50, and 100 µM). Arsenic stress, especially at 100 µM, reduced the net photosynthetic rate, transpiration rate, stomatal conductance of spinach leaves and biomass. Arsenic stress increased the concentration of malondialdehyde, hydrogen peroxide, osmolytes, as well as antioxidant enzymes activities in spinach plants. Application of brassinosteroid and salicylic acid significantly increased activities of antioxidant enzymes (peroxidase, ascorbate peroxidase, and superoxide dismutase), osmolytes accumulation (carbohydrates and proline) and spinach biomass; in contrast, application of brassinosteroid and salicylic acid decreased the concentration of malondialdehyde and hydrogen peroxide in spinach plants under arsenic stress conditions. Arsenic accumulation was higher in spinach roots than in leaves. Under 100 µM arsenic stress, the application of different concentrations of salicylic acid and brassinosteroid, individually and in combination, significantly reduced arsenic accumulation in spinach, with the highest positive effect being observed in the treatment of 0.75 mM salicylic acid + 0.75 µM brassinosteroid. In conclusion, brassinosteroid and salicylic acid application increased the tolerance of spinach plants against arsenic stress by improving gas exchange, activity of antioxidant enzymes, accumulation of osmolytes, stability of the membranes, and as a result plant biomass; the positive effects of brassinosteroid and salicylic acid together were greater than that of brassinosteroid or salicylic acid applied separately.