AIP Advances (Mar 2013)
Power transmission and group delay in gain-assisted plasmon-induced transparency
Abstract
A gain-assisted plasmonic waveguide with two detuned resonators is investigated in the plasmon-induced transparency window. Phase map is employed to study power transmittance and group delay for varying gain coefficients and frequency detunings of the two resonators. The gain coefficient for lasing oscillation condition is analytically shown to vary quadratically with the frequency detuning. In the amplification regime below the lasing threshold, the spectrum implies not only large group delay, but also high transmittance and narrow linewidth. This is in contrast to those in the loss-compensation regime and the passive case in which there always exists a trade-off between the linewidth and the peak transmittance.