Remote Sensing (Jul 2024)

An Adaptive Noisy Label-Correction Method Based on Selective Loss for Hyperspectral Image-Classification Problem

  • Zina Li,
  • Xiaorui Yang,
  • Deyu Meng,
  • Xiangyong Cao

DOI
https://doi.org/10.3390/rs16132499
Journal volume & issue
Vol. 16, no. 13
p. 2499

Abstract

Read online

Due to the intricate terrain and restricted resources, hyperspectral image (HSI) datasets captured in real-world scenarios typically contain noisy labels, which may seriously affect the classification results. To address this issue, we work on a universal method that rectifies the labels first and then trains the classifier with corrected labels. In this study, we relax the common assumption that all training data are potentially corrupted and instead posit the presence of a small set of reliable data points within the training set. Under this framework, we propose a novel label-correction method named adaptive selective loss propagation algorithm (ASLPA). Firstly, the spectral–spatial information is extracted from the hyperspectral image and used to construct the inter-pixel transition probability matrix. Secondly, we construct the trusted set with the known clean data and estimate the proportion of accurate labels within the untrusted set. Then, we enlarge the trusted set according to the estimated proportion and identify an adaptive number of samples with lower loss values from the untrusted set to supplement the trusted set. Finally, we conduct label propagation based on the enlarged trusted set. This approach takes full advantage of label information from the trusted and untrusted sets, and moreover the exploitation on the untrusted set can adjust adaptively according to the estimated noise level. Experimental results on three widely used HSI datasets show that our proposed ASLPA method performs better than the state-of-the-art label-cleaning methods.

Keywords