Journal of Cardiovascular Magnetic Resonance (Dec 2017)

Ferumoxytol enhanced black-blood cardiovascular magnetic resonance imaging

  • Kim-Lien Nguyen,
  • Eun-Ah Park,
  • Takegawa Yoshida,
  • Peng Hu,
  • J. Paul Finn

DOI
https://doi.org/10.1186/s12968-017-0422-y
Journal volume & issue
Vol. 19, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Background Bright-blood and black-blood cardiovascular magnetic resonance (CMR) techniques are frequently employed together during a clinical exam because of their complementary features. While valuable, existing black-blood CMR approaches are flow dependent and prone to failure. We aim to assess the effectiveness and reliability of ferumoxytol enhanced (FE) Half-Fourier Single-shot Turbo Spin-echo (HASTE) imaging without magnetization preparation pulses to yield uniform intra-luminal blood signal suppression by comparing FE-HASTE with pre-ferumoxytol HASTE imaging. Methods This study was IRB-approved and HIPAA compliant. Consecutive patients who were referred for FE-CMR between June 2013 and February 2017 were enrolled. Qualitative image scores reflecting the degree and reliability of blood signal suppression were based on a 3-point Likert scale, with 3 reflecting perfect suppression. For quantitative evaluation, homogeneity indices (defined as standard deviation of the left atrial signal intensity) and signal-to-noise ratios (SNR) for vascular lumens and cardiac chambers were measured. Results Of the 340 unique patients who underwent FE-CMR, HASTE was performed in 257. Ninety-three patients had both pre-ferumoxytol HASTE and FE-HASTE, and were included in this analysis. Qualitative image scores reflecting the degree and reliability of blood signal suppression were significantly higher for FE-HASTE images (2.9 [IQR 2.8–3.0] vs 1.8 [IQR 1.6–2.1], p < 0.001). Inter-reader agreement was moderate (k = 0.50, 95% CI 0.45–0.55). Blood signal suppression was more complete on FE-HASTE images than on pre-ferumoxytol HASTE, as indicated by lower mean homogeneity indices (24.5 [IQR 18.0–32.8] vs 108.0 [IQR 65.0–170.4], p < 0.001) and lower blood pool SNR for all regions (5.6 [IQR 3.2–10.0] vs 21.5 [IQR 12.5–39.4], p < 0.001). Conclusion FE-HASTE black-blood imaging offers an effective, reliable, and simple approach for flow independent blood signal suppression. The technique holds promise as a fast and routine complement to bright-blood cardiovascular imaging with ferumoxytol.

Keywords