Ecology and Evolution (Jun 2021)
Volatilome of Aleppo Pine litter over decomposition process
Abstract
Abstract Biogenic Volatile Organic Compounds (BVOC) are largely accepted to contribute to both atmospheric chemistry and ecosystem functioning. While the forest canopy is recognized as a major source of BVOC, emissions from plant litter have scarcely been explored with just a couple of studies being focused on emission patterns over litter decomposition process. The aim of this study was to quantitatively and qualitatively characterize BVOC emissions (C1–C15) from Pinus halepensis litter, one of the major Mediterranean conifer species, over a 15‐month litter decomposition experiment. Senescent needles of P. halepensis were collected and placed in 42 litterbags where they underwent in situ decomposition. Litterbags were collected every 3 months and litter BVOC emissions were studied in vitro using both online (PTR‐ToF‐MS) and offline analyses (GC‐MS). Results showed a large diversity of BVOC (58 compounds detected), with a strong variation over time. Maximum total BVOC emissions were observed after 3 months of decomposition with 9.18 µg gDM−1 hr−1 mainly composed by terpene emissions (e.g., α‐pinene, terpinolene, β‐caryophyllene). At this stage, methanol, acetone, and acetic acid were the most important nonterpenic volatiles representing, respectively, up to 26%, 10%, and 26% of total emissions. This study gives an overview of the evolution of BVOC emissions from litter along with decomposition process and will thus contribute to better understand the dynamics and sources of BVOC emission in Mediterranean pine forests.
Keywords