Catalysts (Feb 2018)

1,3-Diene Polymerization Mediated by Homoleptic Tetramethylaluminates of the Rare-Earth Metals

  • Christoph O. Hollfelder,
  • Lars N. Jende,
  • Dominic Diether,
  • Theresa Zelger,
  • Rita Stauder,
  • Cäcilia Maichle-Mössmer,
  • Reiner Anwander

DOI
https://doi.org/10.3390/catal8020061
Journal volume & issue
Vol. 8, no. 2
p. 61

Abstract

Read online

During the past two decades homoleptic tetramethylaluminates of the trivalent rare-earth metals, Ln(AlMe4)3, have emerged as useful components for efficient catalyst design in the field of 1,3-diene polymerization. Previous work had focused on isoprene polymerization applying Ln(AlMe4)3 precatalysts with Ln = La, Ce, Pr, Nd, Gd and Y, in the presence of Et2AlCl as an activator. Polymerizations employing Ln(AlMe4)3 with Ln = La, Y and Nd along with borate/borane co-catalysts [Ph3C][B(C6F5)4], [PhNMe2H][B(C6F5)4] and [B(C6F5)3] were mainly investigated for reasons of comparison with ancillary ligand-supported systems (cf. half-sandwich complexes). The present study investigates into a total of eleven rare-earth elements, namely Ln = La, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Y, Er and Lu. A full overview on the polymerization behavior of Ln(AlMe4)3 in the presence of perfluorinated borate/borane cocatalysts and R2AlCl-type activators (R = Me, Et) is provided, probing the monomers isoprene and 1,3-butadiene (and preliminary ethylene). Virtually complete cis-1,4-selectivities are obtained for several catalyst/cocatalyst combinations (e.g., Gd(AlMe4)3/Me2AlCl, >99.9%). Insights into the ‘black box’ of active species are obtained by indirect observations via screening of pre-reaction time and cocatalyst concentration. The microstructure of the polydienes is investigated by combined 1H/13C NMR and ATR-IR spectroscopies. Furthermore, the reaction of [LuMe6(Li(thf)x)3] with AlMe3 has been applied as a new strategy for the efficient synthesis of Lu(AlMe4)3. The solid-state structures of Gd(AlMe4)3 and Tb(AlMe4)3 are reported.

Keywords