Water (Dec 2021)

Assessing Surface Water Flood Risks in Urban Areas Using Machine Learning

  • Zhufeng Li,
  • Haixing Liu,
  • Chunbo Luo,
  • Guangtao Fu

DOI
https://doi.org/10.3390/w13243520
Journal volume & issue
Vol. 13, no. 24
p. 3520

Abstract

Read online

Urban flooding is a devastating natural hazard for cities around the world. Flood risk mapping is a key tool in flood management. However, it is computationally expensive to produce flood risk maps using hydrodynamic models. To this end, this paper investigates the use of machine learning for the assessment of surface water flood risks in urban areas. The factors that are considered in machine learning models include coordinates, elevation, slope gradient, imperviousness, land use, land cover, soil type, substrate, distance to river, distance to road, and normalized difference vegetation index. The machine learning models are tested using the case study of Exeter, UK. The performance of machine learning algorithms, including naïve Bayes, perceptron, artificial neural networks (ANNs), and convolutional neural networks (CNNs), is compared based on a spectrum of indicators, e.g., accuracy, F-beta score, and receiver operating characteristic curve. The results obtained from the case study show that the flood risk maps can be accurately generated by the machine learning models. The performance of models on the 30-year flood event is better than 100-year and 1000-year flood events. The CNNs and ANNs outperform the other machine learning algorithms tested. This study shows that machine learning can help provide rapid flood mapping, and contribute to urban flood risk assessment and management.

Keywords