PLoS ONE (Jan 2014)

Nitric oxide synthase (NOS) inhibition during porcine in vitro maturation modifies oocyte protein S-nitrosylation and in vitro fertilization.

  • Jon Romero-Aguirregomezcorta,
  • Ángela Patricia Santa,
  • Francisco Alberto García-Vázquez,
  • Pilar Coy,
  • Carmen Matás

DOI
https://doi.org/10.1371/journal.pone.0115044
Journal volume & issue
Vol. 9, no. 12
p. e115044

Abstract

Read online

Nitric oxide (NO) is a molecule involved in many reproductive processes. Its importance during oocyte in vitro maturation (IVM) has been demonstrated in various species although sometimes with contradictory results. The objective of this study was to determine the effect of NO during IVM of cumulus oocyte complexes and its subsequent impact on gamete interaction in porcine species. For this purpose, IVM media were supplemented with three NOS inhibitors: NG-nitro-L-arginine methyl ester (L-NAME), NG-monomethyl-L-arginine (L-NMMA) and aminoguanidine (AG). A NO donor, S-nitrosoglutathione (GSNO), was also used. The effects on the cumulus cell expansion, meiotic resumption, zona pellucida digestion time (ZPdt) and, finally, on in vitro fertilization (IVF) parameters were evaluated. The oocyte S-nitrosoproteins were also studied by in situ nitrosylation. The results showed that after 42 h of IVM, AG, L-NAME and L-NMMA had an inhibitory effect on cumulus cell expansion. Meiotic resumption was suppressed only when AG was added, with 78.7% of the oocytes arrested at the germinal vesicle state (P<0.05). Supplementation of the IVM medium with NOS inhibitors or NO donor did not enhance the efficiency of IVF, but revealed the importance of NO in maturation and subsequent fertilization. Furthermore, protein S-nitrosylation is reported for the first time as a pathway through which NO exerts its effect on porcine IVM; therefore, it would be important to determine which proteins are nitrosylated in the oocyte and their functions, in order to throw light on the mechanism of action of NO in oocyte maturation and subsequent fertilization.