Boundary Value Problems (Nov 2021)

On a power-type coupled system with mean curvature operator in Minkowski space

  • Zhiqian He,
  • Yanzhong Zhao,
  • Liangying Miao

DOI
https://doi.org/10.1186/s13661-021-01572-z
Journal volume & issue
Vol. 2021, no. 1
pp. 1 – 9

Abstract

Read online

Abstract We study the Dirichlet problem for the prescribed mean curvature equation in Minkowski space { M ( u ) + v α = 0 in B , M ( v ) + u β = 0 in B , u | ∂ B = v | ∂ B = 0 , $$ \textstyle\begin{cases} \mathcal{M}(u)+ v^{\alpha }=0\quad \text{in } B, \\ \mathcal{M}(v)+ u^{\beta }=0\quad \text{in } B, \\ u|_{\partial B}=v|_{\partial B}=0, \end{cases} $$ where M ( w ) = div ( ∇ w 1 − | ∇ w | 2 ) $\mathcal{M}(w)=\operatorname{div} ( \frac{\nabla w}{\sqrt{1-|\nabla w|^{2}}} )$ and B is a unit ball in R N ( N ≥ 2 ) $\mathbb{R}^{N} (N\geq 2)$ . We use the index theory of fixed points for completely continuous operators to obtain the existence, nonexistence and uniqueness results of positive radial solutions under some corresponding assumptions on α, β.

Keywords