International Journal of Molecular Sciences (Apr 2020)

Electrophoretic Deposition of Copper(II)–Chitosan Complexes for Antibacterial Coatings

  • Muhammad Asim Akhtar,
  • Kanwal Ilyas,
  • Ivo Dlouhý,
  • Filip Siska,
  • Aldo R. Boccaccini

DOI
https://doi.org/10.3390/ijms21072637
Journal volume & issue
Vol. 21, no. 7
p. 2637

Abstract

Read online

Bacterial infection associated with medical implants is a major threat to healthcare. This work reports the fabrication of Copper(II)–Chitosan (Cu(II)–CS) complex coatings deposited by electrophoretic deposition (EPD) as potential antibacterial candidate to combat microorganisms to reduce implant related infections. The successful deposition of Cu(II)–CS complex coatings on stainless steel was confirmed by physicochemical characterizations. Morphological and elemental analyses by scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) spectroscopy verified the uniform distribution of copper in the Chitosan (CS) matrix. Moreover, homogeneous coatings without precipitation of metallic copper were confirmed by X-ray diffraction (XRD) spectroscopy and SEM micrographs. Controlled swelling behavior depicted the chelation of copper with polysaccharide chains that is key to the stability of Cu(II)–CS coatings. All investigated systems exhibited stable degradation rate in phosphate buffered saline (PBS)–lysozyme solution within seven days of incubation. The coatings presented higher mechanical properties with the increase in Cu(II) concentration. The crack-free coatings showed mildly hydrophobic behavior. Antibacterial assays were performed using both Gram-positive and Gram-negative bacteria. Outstanding antibacterial properties of the coatings were confirmed. After 24 h of incubation, cell studies of coatings confirms that up to a certain threshold concentration of Cu(II) were not cytotoxic to human osteoblast-like cells. Overall, our results show that uniform and homogeneous Cu(II)–CS coatings with good antibacterial and enhanced mechanical stability could be successfully deposited by EPD. Such antibiotic-free antibacterial coatings are potential candidates for biomedical implants.

Keywords