mSphere (Aug 2023)

Development of the Shigella flexneri 2a, 3a, 6, and S. sonnei artificial Invaplex (InvaplexAR) vaccines

  • K. Ross Turbyfill,
  • Kristen A. Clarkson,
  • Edwin V. Oaks,
  • Daniel V. Zurawski,
  • Anthony R. Vortherms,
  • Robert W. Kaminski

DOI
https://doi.org/10.1128/msphere.00073-23
Journal volume & issue
Vol. 8, no. 4

Abstract

Read online

ABSTRACT The Shigella artificial invasin complex (InvaplexAR) vaccine is a subunit approach that effectively induces robust immunogenicity directed to serotype-specific lipopolysaccharide and the broadly conserved IpaB and IpaC proteins. One advantage of the vaccine approach is the ability to adjust the constituents to address suboptimal immunogenicity and to change the Shigella serotype targeted by the vaccine. As the vaccine moves through the product development pipeline, substantial modifications have been made to address manufacturing feasibility, acceptability to regulatory authorities, and developing immunogenic and effective products for an expanded list of Shigella serotypes. Modifications of the recombinant clones used to express affinity tag-free proteins using well-established purification methods, changes to detergents utilized in the assembly process, and in vitro and in vivo evaluation of different Invaplex formulations have led to the establishment of a scalable, reproducible manufacturing process and enhanced immunogenicity of Invaplex products designed to protect against four of the most predominant Shigella serotypes responsible for global morbidity and mortality. These adjustments and improvements provide the pathway for the manufacture and clinical testing of a multivalent Invaplex vaccine. IMPORTANCE Shigella species are a major global health concern that cause severe diarrhea and dysentery in children and travelers to endemic areas of the world. Despite significant advancements in access to clean water, the increases in antimicrobial resistance and the risk of post-infection sequelae, including cognitive and physical stunting in children, highlight the urgent need for an efficacious vaccine. One promising vaccine approach, artificial Invaplex, delivers key antigens recognized by the immune system during infection, which results in increased resistance to re-infection. The work presented here describes novel modifications to a previously described vaccine approach resulting in improved methods for manufacturing and regulatory approvals, expansion of the breadth of coverage to all major Shigella serotypes, and an increase in the potency of artificial Invaplex.

Keywords