Doklady Belorusskogo gosudarstvennogo universiteta informatiki i radioèlektroniki (Nov 2020)
Modeling the impacts of heavy charged particles on electrical characteristics of n-MOSFET device structure
Abstract
The use of microelectronic products in outer space is possible if protection is provided against special external influencing factors, including radiation effect. For digital integrated circuits manufactured using submicron CMOS processes, the greatest influence is exerted by radiation effects caused by exposure to a heavy charged particle. The use of special design tools in the development of dual-purpose microcircuits, with increased resistance to the impact of heavy charged particles, prevents single events from occurring. Thus, the use of modern software products for device and technological modeling in microelectronics when developing the element base of radiation-resistant microcircuits for space purposes will cut the time to develop new products and make it possible to modernize (improve performance) already existing device and circuitry solutions. The paper delivers the results of modeling the impacts of heavy charged particles with a magnitude of linear energy transfer equal to 1.81, 10.1, 18.8, 55.0 MeV·cm2/mg, corresponding to nitrogen ions 15N+4 with an energy E = 1,87 MeV; argon 40Ar+12 with an energy E = 372 MeV; ferrum 56Fe+15 with an energy E = 523 MeV; xenon 131Xe+35 with an energy E = 1217 MeV, on electrical characteristics of n-MOSFET device structure. The dependences of the maximum drain current IС on the motion trajectory of a heavy charged particle and the ambient temperature are shown.
Keywords