Sustainable Chemistry (Dec 2021)

Coumarin 153 Dynamics in Ethylammonium Nitrate: The Effects of Dilution with Methanol

  • Mark P. Heitz,
  • Tyler J. Sabo,
  • Stephanie M. Robillard

DOI
https://doi.org/10.3390/suschem2040041
Journal volume & issue
Vol. 2, no. 4
pp. 778 – 795

Abstract

Read online

Magic angle intensity decay and dynamic fluorescence anisotropy measurements were made on the binary solvent system composed of ethylammonium nitrate ([N2,0,0,0+][NO3−], EAN) + methanol (MeOH) across the complete EAN mole fraction range (xIL = 0–1) using the neutral dipolar solute coumarin 153 (C153) at 295 K. Stokes–Einstein–Debye (SED) hydrodynamic theory was used as a model framework to assess the C153 rotational reorientation dynamics. Departure from stick SED prediction was observed (in contrast to literature reports that used cationic or anionic dyes) and indicated a significant influence of domain nanoheterogeneity on probe dynamics. Steady-state spectroscopy indicated minimal changes in spectral peak and width with mole fraction, except at xIL = 0.3 where absorption widths decreased by ~170 cm−1, signaling that C153 sensed a change in solution heterogeneity. Magic angle intensity decays corroborated the steady-state observation and the excited-state lifetimes showed a marked change from xIL = 0.2–0.4 where EAN-EAN interactions became notably more significant. C153 average rotation times (⟨τrot⟩) showed significant solvent decoupling with increased EAN. The rotational data were fit to a power law dependence, ⟨τrot⟩ ∝ (ηT)p, where p = 0.82, demonstrating the presence of dynamic heterogeneity in the EAN/MeOH solutions. With increased EAN, rotation times showed that the heterogeneity became increasingly more significant since the rotation times systematically decreased away from the hydrodynamic stick limit.

Keywords