Haematologica (Aug 2020)
A three-gene signature based on <i>MYC</i>, <i>BCL-2</i> and <i>NFKBIA</i> improves risk stratification in diffuse large B-cell lymphoma
Abstract
Recent randomized trials focused on gene expression-based determination of the cell of origin in diffuse large B-cell lymphoma could not show significant improvements by adding novel agents to standard chemoimmunotherapy. The aim of this study was the identification of a gene signature able to refine current prognostication algorithms and applicable to clinical practice. Here we used a targeted gene expression profiling panel combining the Lymph2Cx signature for cell of origin classification with additional targets including MYC, BCL-2 and NFKBIA, in 186 patients from 2 randomized trials (discovery cohort) (NCT00355199 and NCT00499018). Data were validated in 3 independent series (2 large public datasets and a real-life cohort). By integrating the cell of origin, MYC/BCL-2 double expressor status and NFKBIA expression, we defined a 3-gene signature combining MYC, BCL-2 and NFKBIA (MBN-signature), which outperformed the MYC/BCL-2 double expressor status in multivariate analysis, and allowed further risk stratification within the germinal center B-cell/unclassified subset. The high-risk (MBN Sig-high) subgroup identified the vast majority of double hit cases and a significant fraction of Activated B-Cell-derived diffuse large B-cell lymphomas. These results were validated in 3 independent series including a cohort from the REMoDL-B trial, where, in an exploratory ad hoc analysis, the addition of bortezomib in the MBN Sig-high subgroup provided a progression free survival advantage compared with standard chemoimmunotherapy. These data indicate that a simple 3-gene signature based on MYC, BCL-2 and NFKBIA could refine the prognostic stratification in diffuse large B-cell lymphoma, and might be the basis for future precision-therapy approaches.