Applied Sciences (Jan 2022)
Borehole Geophysical Joint Inversion to Fully Evaluate Shaly Sandstone Formations
Abstract
Simultaneous inversion of sonic, density, and electrical resistivity borehole-derived well logs, has been addressed in literature in recent years. However, this problem is not broadly studied for dual-porosity sandstone formations. In addition, most authors presumed salinity and matrix properties as known parameters in their studies. We integrate the conservation of mass to model density, a differential effective medium theory for elastic modeling, and a laboratory-supported model for electrical resistivity of dual-porosity sandstones. Utilizing this methodology, we simulate electrical resistivity, sonic, and density well-log data. We develop a stochastic global search engine to jointly invert petrophysical properties. We build a dual-porosity formation with associated petrophysical properties and show the proposed workflow accurately replicates true well-log responses in the oil column, water leg, and transition zone. Local petrophysical properties (microporosity, intergranular porosity, total porosity, and water saturation) and global model parameters (salinity, matrix properties, critical porosity, resistivity lithology exponents, and sonic length scales for different pore networks) are all well recovered. The developed multiphysics calibrated rock models will assist petrophysicists and seismic analysts to identify and distinguish sandstone facies characteristics from well-log and prestack seismic data.
Keywords