Nature Communications (Mar 2024)

Three-stage ultrafast demagnetization dynamics in a monolayer ferromagnet

  • Na Wu,
  • Shengjie Zhang,
  • Daqiang Chen,
  • Yaxian Wang,
  • Sheng Meng

DOI
https://doi.org/10.1038/s41467-024-47128-4
Journal volume & issue
Vol. 15, no. 1
pp. 1 – 9

Abstract

Read online

Abstract Intense laser pulses can be used to demagnetize a magnetic material on an extremely short timescale. While this ultrafast demagnetization offers the potential for new magneto-optical devices, it poses challenges in capturing coupled spin-electron and spin-lattice dynamics. In this article, we study the photoinduced ultrafast demagnetization of a prototype monolayer ferromagnet Fe3GeTe2 and resolve the three-stage demagnetization process characterized by an ultrafast and substantial demagnetization on a timescale of 100 fs, followed by light-induced coherent A 1g phonon dynamics which is strongly coupled to the spin dynamics in the next 200–800 fs. In the third stage, chiral lattice vibrations driven by nonlinear phonon couplings, both in-plane and out-of-plane are produced, resulting in significant spin precession. Nonadiabatic effects are found to introduce considerable phonon hardening and suppress the spin-lattice couplings during demagnetization. Our results advance our understanding of dynamic charge-spin-lattice couplings in the ultrafast demagnetization and evidence angular momentum transfer between the phonon and spin degrees of freedom.