Heliyon (Aug 2024)

Development and evaluation of nanoemulsion gel loaded with bioactive extract of Cucumis melo var. agrestis: A novel approach for enhanced skin permeability and antifungal activity

  • Ambreen Akhter,
  • Jafir Hussain Shirazi,
  • Haji Muhammad Shoaib khan,
  • Muhammad Delwar Hussain,
  • Mohsin Kazi

Journal volume & issue
Vol. 10, no. 15
p. e35069

Abstract

Read online

The utilization of phytoconstituents in skin care products has emerged as a notable trend due to their recognized safety and therapeutic efficacy. However, the challenge lies in improving the effective delivery of phytoconstituents to specific tissues, primarily attributed to their poor solubility and low permeability. This study endeavors to address this challenge by developing, optimizing and characterizing Cucumis melo var. agrestis (CME) extract loaded nanoemulsion gel (CME-NEG), aiming to enhance the skin permeability and antifungal activity. Herein, nanoemulsions encapsulating the plant extract were prepared using ultrasonication technique and were characterized for droplet size, zeta potential, polydispersity index (PDI) and entrapment efficiency. Further, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) analysis were conducted to characterize the optimized CME extract loaded nanoemulsion (CME-NE 3) formulation. The optimized formulation was blended with Carbopol 940 gel to develop CME-NEG, which was evaluated for release kinetics, in vitro permeation and in vitro antifungal activity. High performance liquid chromatography (HPLC) analysis confirmed the presence of gallic acid, chlorogenic acid, 4-Hydroxy benzoic acid (HB acid), kaempferol, caffeic acid and quercetin. Findings of 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay showed that the ethanolic extract had highest antioxidant activity (88.88 %). The optimized formulation displayed smooth spherical nanodroplets with size of 175.5 ± 1.56 nm, zeta potential of −21.5 ± 0.12 mV, PDI of 0.192 ± 0.06, and highest entrapment efficiency (EE) of 91.35 ± 1.65 %. The release profile of CME-NE exhibited a controlled release characteristic and the release kinetic mechanism was best described by the Korsmeyer-Peppas (Kp) model. In a 24 h permeation study, it was observed that the in vitro permeation of CME-NEG was 58.63 %, significantly higher than that of CME extract loaded plain gel (CME-PG) with an enhancement ratio of 2.12. The prepared CME-NEG formulation also presented enhanced antifungal activity as compared to pure CME extract. In conclusion, the designed CME-NEG offers a promising topical drug delivery system with enhanced skin permeability and antifungal activity.

Keywords