Fermentation (Oct 2024)
Impacts of Slow-Release Urea in Ruminant Diets: A Review
Abstract
The increasing costs of traditional protein sources, such as soybean meal (SBM), have prompted interest in alternative feeds for ruminants. Non-protein nitrogen (NPN) sources, like urea, offer a cost-effective alternative by enabling rumen microorganisms to convert NPN into microbial protein, which is crucial for ruminant nutrition. However, the rapid hydrolysis of urea in the rumen can result in excessive ammonia (NH3) production and potential toxicity. Slow-release urea (SRU) has been developed to mitigate these issues by gradually releasing nitrogen, thereby improving nutrient utilization and reducing NH3 toxicity risks. This review explores SRU’s development, types, mechanisms, and benefits, highlighting its potential to enhance ruminal fermentation, microbial protein synthesis, and overall feed efficiency. SRU formulations include polymer-coated urea, lipid-coated urea, calcium-urea, starea, and zeolite-impregnated urea, each designed to control nitrogen release and minimize adverse effects. Studies have demonstrated that SRU can improve microbial nitrogen efficiency and reduce nitrogen losses, although results regarding feed intake, digestibility, and milk yield are mixed. These discrepancies indicate that factors such as SRU type, diet formulation, and animal breed may influence outcomes. Continued research is essential to optimize SRU applications, aiming to enhance ruminant production, economic viability, and environmental stewardship.
Keywords