Acta Biochimica et Biophysica Sinica (May 2024)
Salidroside ameliorates acute liver transplantation rejection in rats by inhibiting neutrophil extracellular trap formation
Abstract
Acute rejection is an important factor affecting the survival of recipients after liver transplantation. Salidroside has various properties, including anti-inflammatory, antioxidant, and hepatoprotective properties. This study aims to investigate whether salidroside can prevent acute rejection after liver transplantation and to examine the underlying mechanisms involved. An in vivo acute rejection model is established in rats that are pretreated with tacrolimus (1 mg/kg/d) or salidroside (10 or 20 mg/kg/d) for seven days after liver transplantation. In addition, an in vitro experiment is performed using neutrophils incubated with salidroside (1, 10, 50 or 100 μM). Hematoxylin-eosin staining, terminal deoxynucleotidyl transferase dUTP nick-end labeling staining, immunosorbent assays, immunofluorescence analysis, Evans blue staining, and western blot analysis are performed to examine the impact of salidroside on NET formation and acute rejection in vitro and in vivo. We find that Salidroside treatment reduces pathological liver damage, serum aminotransferase level, and serum levels of IL-1β, IL-6, and TNF-α in vivo. The expressions of proteins associated with the HMGB1/TLR-4/MAPK signaling pathway (HMGB1, TLR-4, p-ERK1/2, p-JNK, p-P38, cleaved caspase-3, cleaved caspase-9, Bcl-2, Bax, IL-1β, TNF-α, and IL-6) are also decreased after salidroside treatment. In vitro experiments show that the release of HMGB1/TLR-4/MAPK signaling pathway-associated proteins from neutrophils treated with lipopolysaccharide is decreased by salidroside. Moreover, salidroside inhibits NETosis and protects against acute rejection by regulating the HMGB1/TLR-4/MAPK signaling pathway. Furthermore, salidroside combined with tacrolimus has a better effect than either of the other treatments alone. In summary, salidroside can prevent acute liver rejection after liver transplantation by reducing neutrophil extracellular trap development through the HMGB1/TLR-4/MAPK signaling pathway.
Keywords