Complexity (Jan 2020)
Distributed Adaptive Fixed-Time Tracking Consensus Control for Multiple Uncertain Nonlinear Strict-Feedback Systems under a Directed Graph
Abstract
In this brief, we study the distributed adaptive fixed-time tracking consensus control problem for multiple strict-feedback systems with uncertain nonlinearities under a directed graph topology. It is assumed that the leader’s output is time varying and has been accessed by only a small fraction of followers in a group. The distributed fixed-time tracking consensus control is proposed to design local consensus controllers in order to guarantee the consensus tracking between the followers and the leader and ensure the error convergence time is independent of the systems’ initial state. The function approximation technique using radial basis function neural networks (RBFNNs) is employed to compensate for unknown nonlinear terms induced from the controller design procedure. From the Lyapunov stability theorem and graph theory, it is shown that, by using the proposed fixed-time control strategy, all signals in the closed-loop system and the consensus tracking errors are cooperatively semiglobally uniformly bounded and the errors converge to a neighborhood of the origin within a fixed time. Finally, the effectiveness of the proposed control strategy has been proved by rigorous stability analysis and two simulation examples.