PLoS ONE (Jan 2021)

The genetic association of the transcription factor NPAT with glycemic response to metformin involves regulation of fuel selection.

  • Changwei Chen,
  • Jennifer R Gallagher,
  • Jamie Tarlton,
  • Lidy van Aalten,
  • Susan E Bray,
  • Michael L J Ashford,
  • Rory J McCrimmon,
  • Ewan R Pearson,
  • Alison D McNeilly,
  • Calum Sutherland

DOI
https://doi.org/10.1371/journal.pone.0253533
Journal volume & issue
Vol. 16, no. 7
p. e0253533

Abstract

Read online

The biguanide, metformin, is the first-choice therapeutic agent for type-2 diabetes, although the mechanisms that underpin metformin clinical efficacy remain the subject of much debate, partly due to the considerable variation in patient response to metformin. Identification of poor responders by genotype could avoid unnecessary treatment and provide clues to the underlying mechanism of action. GWAS identified SNPs associated with metformin treatment success at a locus containing the NPAT (nuclear protein, ataxia-telangiectasia locus) and ATM (ataxia-telangiectasia mutated) genes. This implies that gene sequence dictates a subsequent biological function to influence metformin action. Hence, we modified expression of NPAT in immortalized cell lines, primary mouse hepatocytes and mouse tissues, and analysed the outcomes on metformin action using confocal microscopy, immunoblotting and immunocytochemistry. In addition, we characterised the metabolic phenotype of npat heterozygous knockout mice and established the metformin response following development of insulin resistance. NPAT protein was localised in the nucleus at discrete loci in several cell types, but over-expression or depletion of NPAT in immortalised cell models did not change cellular responses to biguanides. In contrast, metformin regulation of respiratory exchange ratio (RER) was completely lost in animals lacking one allele of npat. There was also a reduction in metformin correction of impaired glucose tolerance, however no other metabolic abnormalities, or response to metformin, were found in the npat heterozygous mice. In summary, we provide methodological advancements for the detection of NPAT, demonstrate that minor reductions in NPAT mRNA levels (20-40%) influence metformin regulation of RER, and propose that the association between NPAT SNPs and metformin response observed in GWAS, could be due to loss of metformin modification of cellular fuel usage.