Nature Communications (Aug 2024)

Synchronized crystallization in tin-lead perovskite solar cells

  • Yao Zhang,
  • Chunyan Li,
  • Haiyan Zhao,
  • Zhongxun Yu,
  • Xiaoan Tang,
  • Jixiang Zhang,
  • Zhenhua Chen,
  • Jianrong Zeng,
  • Peng Zhang,
  • Liyuan Han,
  • Han Chen

DOI
https://doi.org/10.1038/s41467-024-51361-2
Journal volume & issue
Vol. 15, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Tin-lead halide perovskites with a bandgap near 1.2 electron-volt hold great promise for thin-film photovoltaics. However, the film quality of solution-processed Sn-Pb perovskites is compromised by the asynchronous crystallization behavior between Sn and Pb components, where the crystallization of Sn-based perovskites tends to occur faster than that of Pb. Here we show that the rapid crystallization of Sn is rooted in its stereochemically active lone pair, which impedes coordination between the metal ion and Lewis base ligands in the perovskite precursor. From this perspective, we introduce a noncovalent binding agent targeting the open metal site of coordinatively unsaturated Sn(II) solvates, thereby synchronizing crystallization kinetics and homogenizing Sn-Pb alloying. The resultant single-junction Sn-Pb perovskite solar cells achieve a certified power conversion efficiency of 24.13 per cent. The encapsulated device retains 90 per cent of the initial efficiency after 795 h of maximum power point operation under simulated one-sun illumination.