Remote Sensing (Nov 2022)

Frequency-Wavenumber Domain Elastic Full Waveform Inversion with a Multistage Phase Correction

  • Yong Hu,
  • Li-Yun Fu,
  • Qingqing Li,
  • Wubing Deng,
  • Liguo Han

DOI
https://doi.org/10.3390/rs14235916
Journal volume & issue
Vol. 14, no. 23
p. 5916

Abstract

Read online

Elastic full waveform inversion (EFWI) is essential for obtaining high-resolution multi-parameter models. However, the conventional EFWI may suffer from severe cycle skipping without the low-frequency components in elastic seismic data. To solve this problem, we propose a multistage phase correction-based elastic full waveform inversion method in the frequency-wavenumber domain, which we call PC-EFWI for short. Specifically, the seismic data are first split using 2-D sliding windows; for each window, the seismic data are then transformed into the frequency-wavenumber domain for PC-EFWI misfit. In addition, we introduced a phase correction factor in the PC-EFWI misfit. In this way, it is possible to reduce phase differences between measured and synthetic data to mitigate cycle skipping by adjusting the phase correction factor in different scales. Numerical examples with the 2-D Marmousi model demonstrate that the frequency-wavenumber domain PC-EFWI with multistage strategy is an excellent way to reduce the risk of EFWI cycle skipping and build satisfactory start models for the conventional EFWI.

Keywords