Catalysts (Aug 2018)

Oxygen Reduction Reaction and Hydrogen Evolution Reaction Catalyzed by Pd–Ru Nanoparticles Encapsulated in Porous Carbon Nanosheets

  • Juntai Tian,
  • Wen Wu,
  • Zhenghua Tang,
  • Yuan Wu,
  • Robert Burns,
  • Brandon Tichnell,
  • Zhen Liu,
  • Shaowei Chen

DOI
https://doi.org/10.3390/catal8080329
Journal volume & issue
Vol. 8, no. 8
p. 329

Abstract

Read online

Developing bi-functional electrocatalysts for both oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER) is crucial for enhancing the energy transfer efficiency of metal–air batteries and fuel cells, as well as producing hydrogen with a high purity. Herein, a series of Pd–Ru alloyed nanoparticles encapsulated in porous carbon nanosheets (CNs) were synthesized and employed as a bifunctional electrocatalyst for both ORR and HER. The TEM measurements showed that Pd–Ru nanoparticles, with a size of approximately 1–5 nm, were uniformly dispersed on the carbon nanosheets. The crystal and electronic structures of the PdxRu100−x/CNs series were revealed by powder X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The as-prepared samples exhibited effective ORR activity in alkaline media and excellent HER activity in both alkaline and acid solutions. The Pd50Ru50/CNs sample displayed the best activity and stability among the series, which is comparable and superior to that of commercial 10% Pd/C. For ORR, the Pd50Ru50/CNs catalyst exhibited an onset potential of 0.903 V vs. RHE (Reversible Hydrogen Electrode) and 11.4% decrease of the current density after 30,000 s of continuous operation in stability test. For HER, the Pd50Ru50/CNs catalyst displayed an overpotential of 37.3 mV and 45.1 mV at 10 mA cm−2 in 0.1 M KOH and 0.5 M H2SO4, respectively. The strategy for encapsulating bimetallic alloys within porous carbon materials is promising for fabricating sustainable energy toward electrocatalysts with multiple electrocatalytic activities for energy related applications.

Keywords