Scientific African (Jul 2023)

Energy-aware message distribution algorithm for enhance FANET pipeline surveillance reliability

  • Emmanuel K. Akut,
  • Aliyu D. Usman,
  • Kabir A. Abubilal,
  • Habeeb Bello,
  • Ahmed Tijani Salawudeen,
  • Abdulmalik S. Yaro,
  • Bashir O. Sadiq,
  • Ezekiel Agbon

Journal volume & issue
Vol. 20
p. e01660

Abstract

Read online

Features such as the communication scheme, energy awareness, and task distribution amongst others are the key component that characterizes the Flying Ad-hoc Network (FANET). The operational efficiency in FANET surveying a specific region is affected by the nature of the UAVs' node placement, routing protocol, energy-aware task distribution, and node interaction amongst others. In this paper, Drone 1 (D1), Master Drone (DM), and Drone 2 (D2) were used to survey a pipeline of length 12.2 m. This paper aims at minimising energy use by drones during surveillance using energy-aware node exchange technique, task interaction and distribution scheme for each UAV. Due to fast energy depletion of DM due to packets aggregation, its election is based on the UAV with the highest energy before take-off. For two different simulations, 14,697.0 J and 14,836.6 J were obtained for DM. To avoid system failure due to fast energy loss of DM, the drones swapped positions and status. First swapping command comes up when DM loses 50% of its energy, while the second command occurs when it further loses 15%. Return to base threshold energy is computed for the three UAVs to avoid crash due to insufficient energy during surveillance. DM returns to base threshold energy for both single and double swapping simulation were 658.105 J and 652.456 J respectively. From the results obtained the algorithms were able to exchange nodes to maximize energy usage and perform an interaction-based task distribution for cooperative task sharing during surveillance. This translates into longer surveillance time and effective telemetry data aggregation.

Keywords