MATEC Web of Conferences (Jan 2019)

The use of solar energy for the curing of ferrogeopolymer elements in the semiarid region

  • H Simatupang Partogi,
  • Lubalu Petrus,
  • L Sianturi Herry,
  • Bunganaen Wilhelmus

DOI
https://doi.org/10.1051/matecconf/201927601031
Journal volume & issue
Vol. 276
p. 01031

Abstract

Read online

Kupang City in Timor Island of Indonesia, as a semiarid area, has abundant solar energy sources. Based on climatology data of Kupang City in 2013-2015, the minimum and maximum average temperatures in Kupang City range from 19.3-34.8oC. Besides, dry seasons last for about 8 months (April-November). This abundance of solar energy is a potential energy resource for the manufacturing of environmentally friendly ferrogeopolymer elements. Based on previous research, the production of geopolymer material can be done optimally with dry curing treatment at 60-80oC for less than 48 hours. Therefore, in this paper, a low-cost, energy efficient oven operated by a solar energy collector was developed. This paper describes a feasibility study of the use of solar energy for curing ferro-geopolymer elements. The ferro-geopolymer elements made were beams with length 600 mm, width 100 mm and height 100 mm. Wire meshes with 6x6mm of opening were used in 5 layers. The solar energy collector system used as an oven was a zinc coated drum which was painted black outwardly and was covered by a glass plate. Using this oven, it was possible to increase the ambient temperature by 1.62 to 2,37 times. Furthermore, this oven can also increase the flexure strength of ferrogeopolymer elements about ± 25.34%. This paper shows good potential use of solar energy in the manufacturing of ferro-geopolymer elements in the semiarid region.