Scientific Reports (Jul 2024)

Paeonol attenuated high glucose-induced apoptosis via up-regulating miR-223-3p in mouse cardiac microvascular endothelial cells

  • Bo Deng,
  • Ruyu Xian,
  • Yuan Shu,
  • Haohan Xia,
  • Chengcheng Feng

DOI
https://doi.org/10.1038/s41598-024-67721-3
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 8

Abstract

Read online

Abstract To investigate the role of miR-223-3p in the modulatory effect of paeonol (Pae) on high glucose (HG)-induced endothelial cell apoptosis. HG (25 mmol/L) was used to induce cellular damage and apoptosis in the mouse cardiac microvascular endothelial cells (MCMECs). Various concentration of Pae was tested and 60 μmol/L Pae was selected for the subsequent studies. MCMECs were transfected with exogenous miR-223-3p mimics or anti-miR-223-3p inhibitors. Cell viability was assessed by MTT assay and apoptosis was quantified by flow cytometry. The expression of miR-223-3p and NLRP3 mRNA was measured using real-time quantitative RT-PCR, and protein level of NLRP3 and apoptosis-related proteins was detected by immunoblotting. Pae significantly attenuated HG-induced apoptosis of MCMECs in a concentration-dependent manner. In addition, Pae (60 µmol/L) significantly reversed HG-induced down-regulation of miR-223-3p and up-regulation of NLRP3. Pae (60 µmol/L) also significantly blocked HG-induced up-regulation of Bax and Caspase-3 as well as down-regulation of Bcl-2. Moreover, exogenous miR-223-3p mimics not only significantly attenuated HG-induced apoptosis, but also significantly suppressed NRLP-3 and pro-apoptotic proteins in the MCMECs. In contrast, transfection of exogenous miR-223-3p inhibitors into the MCMECs resulted in not only significantly increased apoptosis of the cells, but also significant suppression of NLRP3 and pro-apoptotic proteins in the cells. Pae attenuated HG-induced apoptosis of MCMECs in a concentration-dependent manner. MiR-223-3p may mediate the modulatory effects of Pae on MCMEC survival or apoptosis through targeting NLRP3 and regulating apoptosis-associated proteins.

Keywords