HardwareX (Apr 2022)

MicroEye : A low-cost online tool wear monitoring system with modular 3D-printed components for micro-milling application

  • Christiand,
  • Gandjar Kiswanto,
  • Ario Sunar Baskoro,
  • Fachryal Hiltansyah,
  • Muhammad Ramadhani Fitriawan,
  • Ramandika Garindra Putra,
  • Shabrina Kartika Putri,
  • Tae Jo Ko

Journal volume & issue
Vol. 11
p. e00269

Abstract

Read online

Tool detachment during the machining process is often required by many image-based tool wear monitoring (TWM) systems. Tool detachment prevents the online mode of the wear measurement, extends the machining time, and contributes to measurement inaccuracy. Other alternatives of the image-based TWM systems have been developed with the image-acquisition device located statically near the tool position without the requirement for the tool detachment. However, due to its proximity to the machining site, the image-acquisition device may experience obstruction from the workpiece chips and the splash of coolant fluid during the machining process, resulting in non-optimal TWM. This article presents MicroEye – an online image-based TWM system with modular 3D-printed components to overcome the two problems. MicroEye offers great flexibility in its operation through the use of an active 6-DOF (degree of freedom) robotics arm with a camera at the end-effector. MicroEye does not require tool detachment to perform tool wear monitoring and can be safely placed outside the machining area. MicroEye is the first open-sourced, 3D-printed components and active dynamic-type TWM system for the application of micro-milling. MicroEye can be built at a low-cost (approximately US$ 872, including the camera). MicroEye is suitable for various micro-milling sites, from laboratory scale to middle-low workshop.

Keywords