Translational Neuroscience (Nov 2021)

A novel strategy for driving car brain–computer interfaces: Discrimination of EEG-based visual-motor imagery

  • Zhou Zhouzhou,
  • Gong Anmin,
  • Qian Qian,
  • Su Lei,
  • Zhao Lei,
  • Fu Yunfa

DOI
https://doi.org/10.1515/tnsci-2020-0199
Journal volume & issue
Vol. 12, no. 1
pp. 482 – 493

Abstract

Read online

A brain–computer interface (BCI) based on kinesthetic motor imagery has a potential of becoming a groundbreaking technology in a clinical setting. However, few studies focus on a visual-motor imagery (VMI) paradigm driving BCI. The VMI-BCI feature extraction methods are yet to be explored in depth. In this study, a novel VMI-BCI paradigm is proposed to execute four VMI tasks: imagining a car moving forward, reversing, turning left, and turning right. These mental strategies can naturally control a car or robot to move forward, backward, left, and right. Electroencephalogram (EEG) data from 25 subjects were collected. After the raw EEG signal baseline was corrected, the alpha band was extracted using bandpass filtering. The artifacts were removed by independent component analysis. Then, the EEG average instantaneous energy induced by VMI (VMI-EEG) was calculated using the Hilbert–Huang transform (HHT). The autoregressive model was extracted to construct a 12-dimensional feature vector to a support vector machine suitable for small sample classification. This was classified into two-class tasks: visual imagination of driving the car forward versus reversing, driving forward versus turning left, driving forward versus turning right, reversing versus turning left, reversing versus turning right, and turning left versus turning right. The results showed that the average classification accuracy of these two-class tasks was 62.68 ± 5.08%, and the highest classification accuracy was 73.66 ± 6.80%. The study showed that EEG features of O1 and O2 electrodes in the occipital region extracted by HHT were separable for these VMI tasks.

Keywords